Unendliche Kombinatorik und großes Kontinuum
Infinite combinatorics and large continuum
Wissenschaftsdisziplinen
Mathematik (100%)
Keywords
-
Large Continuum,
Combinatorics,
Definability,
Iteration,
Forcing
The main goal of this project is to improve our understanding of the properties of the real line. A large number of the combinatorial properties of the real line as well as its measure theoretic and categorical properties are described by the combinatorial cardinal characteristics and the cardinal characteristics corresponding to measure and category. The subject of cardinal characteristics of the real line can be traced back to the works of Georg Cantor and Rene Baire from more than a century ago and the early development of real analysis. Even though its long history, there are still many open questions in the field, that is questions regarding the properties of the real line which are expressible through cardinal characteristics. Many of those problems are directly related to the topological, combinatorial and algebraic properties of the real line. The purpose of this project is to study exactly such questions. Of particular interest is the study of models of set theory in which the real line has large cardinality, that is cardinality strictly larger than the first uncountable cardinal. On one side there are many open problems regarding the structure of the continuum whose solution will involve such models. Examples are the consistency of the splitting number being of countable cardinality, the existence of a model in which there are no P-points and no Q-points, the existence of a model in which the pseudo intersection number is strictly smaller than the tower number. On the other side there are very few techniques, in particular forcing and iteration techniques, leading to such models. In this project we suggest to look at specific problems involving models of set theory with large continuum, with the objective of not only finding solutions to these problems but also applying and further developing some of the most recent forcing techniques in this process. Among the problems which we consider are for example the definability of certain combinatorial objects on the real line in the presence of large continuum; a generalization of a forcing techniques used to show that the minimal size of a maximal almost disjoint family can be of countable cofinality, so that it can be applied in a much broader context; consistency results which were prior known to hold only under the additional assumption of the existence of a measurable cardinal. Among the existing techniques which appear relevant to the suggested problems are: 1. iteration along a template, a technique originating in the work of Saharon Shelah on the consistency of the dominating number being strictly smaller than the almost disjointness number; 2. ultrapowers of forcing notions; 3. matrix iterations of ccc posets, a technique which appeared originally in the work of Andreas Blass and Saharon Shelah on the dominating and ultrafilter numbers, and which was recently further developed in my joint project with Jörg Brendle where we study the almost disjointness, bounding and splitting numbers; 4. the construction of generic posets and applications of generalized mixed support iterations. One may expect that the results and the associated forcing techniques will find direct applications beyond the scope of the suggested problems and so further broaden and enrich our understanding not only of the structure of the real line, but also in a more general context, of the subject of set theory. The Kurt Gödel Research Center for Mathematical Logic at University of Vienna will provide an excellent environment to implement the suggested project. Of particular value will be collaborations with some of the many excellent researchers in the field, currently working there. Among them are Sy-David Friedman, Jakob Kellner, Hiroaki Minami, Miguel Anguel Mota. The research center is often visited by other leading scientists in mathematical logic, which creates an additional possibility for joint discussions and collaborations.
Die kardinalen Charakteristika der reellen Zahlen sind für gewöhnlich als minimale Kardinalität einer Menge reeller Zahlen, die durch eine bestimmte Eigenschaft charakterisiert ist, definiert. Diese Eigenschaften stimmen oft mit den topologischen, maßtheoretischen und kombinatorischen Eigenschaften der reellen Zahlen überein. Ein wichtiges Thema im Studium der kombinatorischen Eigenschaften der reellen Zahlen ist das Studium der Regularität der dazugehörigen kardinalen Charakteristika. Indem wir eine neue Methode einführen um generisch eine neue maximale cofinitäre Gruppe der gewünschten Kardinalität hinzuzufügen, das ist eine Gruppe von Permutationen der natürlichen Zahlen, deren nicht-triviale Elemente nur endlich viele Fixpunkte haben, die maximal bezüglich dieser Eigenschaft ist, zeigen wir dass konsistenter weise die minimale Große einer solchen Gruppe abzählbare Cofinalität haben kann. Die neuen Techniken die wir einführen um dieses Konsistenzresultat zu erhalten, wurden bereits erfolgreich angewandt um zumindest zwei andere offene Probleme maximale cofinitäre Gruppen betreffend, zu losen. Ein anderer wichtiger Bereich des Themas ist das Studium der kombinatorischen Eigenschaften der reellen Zahlen unter der Annahme der Existenz projektiver Wohlordnungen der reellen Zahlen und großen Kontinuums. Als ein anderer bedeutender Beitrag zu diesem Gebiet wurde gezeigt, dass alle bekannten Relationen zwischen den Invarianten Maße und Kategorien betreffend, tatsachlich konsistent sind mit der Existenz projektiver Wohlordnungen der reellen Zahlen. Die Arbeit an diesem Lise-Meitner-Projekt profitiert von vielen nationalen und internationalen Kooperationen, von welchen ich erwarte, dass sie weiterhin interessante und wichtige mathematische Ergebnisse liefern werden.
- Technische Universität Wien - 100%
- Juris Steprans, University of York - Kanada
Research Output
- 39 Zitationen
- 11 Publikationen
-
2018
Titel COHERENT SYSTEMS OF FINITE SUPPORT ITERATIONS DOI 10.1017/jsl.2017.20 Typ Journal Article Autor Fischer V Journal The Journal of Symbolic Logic Seiten 208-236 Link Publikation -
2013
Titel Co-analytic mad families and definable wellorders DOI 10.1007/s00153-013-0345-8 Typ Journal Article Autor Fischer V Journal Archive for Mathematical Logic Seiten 809-822 -
2015
Titel Measure, category and projective wellorders DOI 10.4115/jla.2014.6.8 Typ Journal Article Autor Vischer V Journal Journal of Logic and Analysis Seiten 1-25 Link Publikation -
2015
Titel Template iterations and maximal cofinitary groups DOI 10.4064/fm230-3-1 Typ Journal Article Autor Fischer V Journal Fundamenta Mathematicae Seiten 205-236 Link Publikation -
2017
Titel Splitting, Bounding, and Almost Disjointness Can Be Quite Different DOI 10.4153/cjm-2016-021-8 Typ Journal Article Autor Fischer V Journal Canadian Journal of Mathematics Seiten 502-531 Link Publikation -
2016
Titel Definable maximal cofinitary groups DOI 10.48550/arxiv.1603.02942 Typ Preprint Autor Fischer V Link Publikation -
2016
Titel Coherent systems of finite support iterations DOI 10.48550/arxiv.1609.05433 Typ Preprint Autor Fischer V Link Publikation -
2013
Titel Template iterations and maximal cofinitary groups DOI 10.48550/arxiv.1310.3245 Typ Preprint Autor Fischer V Link Publikation -
2013
Titel Cardinal characteristics, projective wellorders and large continuum DOI 10.1016/j.apal.2012.12.001 Typ Journal Article Autor Fischer V Journal Annals of Pure and Applied Logic Seiten 763-770 Link Publikation -
2015
Titel Splitting, Bounding, and Almost Disjointness can be quite Different DOI 10.48550/arxiv.1508.01068 Typ Other Autor Fischer V Link Publikation -
2014
Titel Cichon’s diagram, regularity properties and ?31 sets of reals DOI 10.1007/s00153-014-0385-8 Typ Journal Article Autor Fischer V Journal Archive for Mathematical Logic Seiten 695-729