• Zum Inhalt springen (Accesskey 1)
  • Zur Suche springen (Accesskey 7)
FWF — Österreichischer Wissenschaftsfonds
  • Zur Übersichtsseite Entdecken

    • Forschungsradar
      • Historisches Forschungsradar 1974–1994
    • Entdeckungen
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog-Magazin
    • Austrian Science Awards
      • FWF-Wittgenstein-Preise
      • FWF-ASTRA-Preise
      • FWF-START-Preise
      • Auszeichnungsfeier
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • Im Fokus
      • 40 Jahre Erwin-Schrödinger-Programm
      • Quantum Austria
      • Spezialforschungsbereiche
    • Dialog und Diskussion
      • think.beyond Summit
      • Am Puls
      • Was die Welt zusammenhält
      • FWF Women’s Circle
      • Science Lectures
    • Wissenstransfer-Events
    • E-Book Library
  • Zur Übersichtsseite Fördern

    • Förderportfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projekte
        • Einzelprojekte
        • Einzelprojekte International
        • Klinische Forschung
        • 1000 Ideen
        • Entwicklung und Erschließung der Künste
        • FWF-Wittgenstein-Preis
      • Karrieren
        • ESPRIT
        • FWF-ASTRA-Preise
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Kooperationen
        • Spezialforschungsgruppen
        • Spezialforschungsbereiche
        • Forschungsgruppen
        • International – Multilaterale Initiativen
        • #ConnectingMinds
      • Kommunikation
        • Top Citizen Science
        • Wissenschaftskommunikation
        • Buchpublikationen
        • Digitale Publikationen
        • Open-Access-Pauschale
      • Themenförderungen
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Ersatzmethoden für Tierversuche
        • Europäische Partnerschaft Biodiversa+
        • Europäische Partnerschaft BrainHealth
        • Europäische Partnerschaft ERA4Health
        • Europäische Partnerschaft ERDERA
        • Europäische Partnerschaft EUPAHW
        • Europäische Partnerschaft FutureFoodS
        • Europäische Partnerschaft OHAMR
        • Europäische Partnerschaft PerMed
        • Europäische Partnerschaft Water4All
        • Gottfried-und-Vera-Weiss-Preis
        • netidee SCIENCE
        • Projekte der Herzfelder-Stiftung
        • Quantum Austria
        • Rückenwind-Förderbonus
        • WE&ME Award
        • Zero Emissions Award
      • Länderkooperationen
        • Belgien/Flandern
        • Deutschland
        • Frankreich
        • Italien/Südtirol
        • Japan
        • Luxemburg
        • Polen
        • Schweiz
        • Slowenien
        • Taiwan
        • Tirol–Südtirol–Trentino
        • Tschechien
        • Ungarn
    • Schritt für Schritt
      • Förderung finden
      • Antrag einreichen
      • Internationales Peer-Review
      • Förderentscheidung
      • Projekt durchführen
      • Projekt beenden
      • Weitere Informationen
        • Integrität und Ethik
        • Inklusion
        • Antragstellung aus dem Ausland
        • Personalkosten
        • PROFI
        • Projektendberichte
        • Projektendberichtsumfrage
    • FAQ
      • Projektphase PROFI
      • Projektphase Ad personam
      • Auslaufende Programme
        • Elise Richter und Elise Richter PEEK
        • FWF-START-Preise
  • Zur Übersichtsseite Über uns

    • Leitbild
    • FWF-Film
    • Werte
    • Zahlen und Daten
    • Jahresbericht
    • Aufgaben und Aktivitäten
      • Forschungsförderung
        • Matching-Funds-Förderungen
      • Internationale Kooperationen
      • Studien und Publikationen
      • Chancengleichheit und Diversität
        • Ziele und Prinzipien
        • Maßnahmen
        • Bias-Sensibilisierung in der Begutachtung
        • Begriffe und Definitionen
        • Karriere in der Spitzenforschung
      • Open Science
        • Open-Access-Policy
          • Open-Access-Policy für begutachtete Publikationen
          • Open-Access-Policy für begutachtete Buchpublikationen
          • Open-Access-Policy für Forschungsdaten
        • Forschungsdatenmanagement
        • Citizen Science
        • Open-Science-Infrastrukturen
        • Open-Science-Förderung
      • Evaluierungen und Qualitätssicherung
      • Wissenschaftliche Integrität
      • Wissenschaftskommunikation
      • Philanthropie
      • Nachhaltigkeit
    • Geschichte
    • Gesetzliche Grundlagen
    • Organisation
      • Gremien
        • Präsidium
        • Aufsichtsrat
        • Delegiertenversammlung
        • Kuratorium
        • Jurys
      • Geschäftsstelle
    • Arbeiten im FWF
  • Zur Übersichtsseite Aktuelles

    • News
    • Presse
      • Logos
    • Eventkalender
      • Veranstaltung eintragen
      • FWF-Infoveranstaltungen
    • Jobbörse
      • Job eintragen
    • Newsletter
  • Entdecken, 
    worauf es
    ankommt.

    FWF-Newsletter Presse-Newsletter Kalender-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, externe URL, öffnet sich in einem neuen Fenster
    • , externe URL, öffnet sich in einem neuen Fenster
    • Facebook, externe URL, öffnet sich in einem neuen Fenster
    • Instagram, externe URL, öffnet sich in einem neuen Fenster
    • YouTube, externe URL, öffnet sich in einem neuen Fenster

    SCILOG

    • Scilog — Das Wissenschaftsmagazin des Österreichischen Wissenschaftsfonds (FWF)
  • elane-Login, externe URL, öffnet sich in einem neuen Fenster
  • Scilog externe URL, öffnet sich in einem neuen Fenster
  • en Switch to English

  

Modulation der Bandstruktur von Ge/Si-Nanodrähten durch mechanische Verspannungen

Strain-driven Band Structure Engineering in Ge/Si-Nanowires

Alois Lugstein (ORCID: 0000-0001-5693-4775)
  • Grant-DOI 10.55776/P28175
  • Förderprogramm Einzelprojekte
  • Status beendet
  • Projektbeginn 01.06.2015
  • Projektende 30.11.2018
  • Bewilligungssumme 262.542 €

Wissenschaftsdisziplinen

Nanotechnologie (50%); Physik, Astronomie (50%)

Keywords

    Nanowire, Quantum Confinement, Germanium, Band gap tuning, Strain, Heterostructures

Abstract Endbericht

Ziel des geplanten Projektes ist es den Einfluss von Quanten-Confinement, elektrischen Feldern und vor allem mechanischen Verspannungen auf die elektrischen und optischen Eigenschaften von Ge/Si-Nanodraht-Strukturen zu erforschen. Si und Ge sind die seit langem etablierten Basis- materialien der CMOS-Technologie. Die geplante Realisierung von On-Chip-Lichtquellen oder Detektoren ist aber aufgrund der ineffizienten Lichtemission mit diesen, indirekten Halbleiter- materialien, nicht möglich. Zuletzt wurden mehrere Forschungsarbeiten publiziert die einen direkten Bandübergang in stark verspannten Si und Ge voraussagen. Dies sollte aufgrund des geringen Energieunterschiedes der Bandlücken für Ge bei wesentlich kleineren Verspannungen möglich sein als für Si. Aktuelle Ansätze die 136 meV Energielücke zwischen dem direkten - und dem indirekten L-Leitungsbandminimum zu schließen umfassen z.B. Quanten-Confinement in Nanostrukturen, den Einbau von Sn in die Gitterstruktur von Ge und eben die gezielte Verspannung des Ge Kristallgitters teilweise auch in Verbindung mit starker n-Dotierung. Der Übergang zum direkten Halbleiter sollte dabei durch eine biaxiale Verspannung von ~2% bzw. einer uniaxiale Verspannung von etwa 4% erzielt werden können. Die Realisierung von so hohen Verspannungen dürfte allerdings in ausgedehnten Ge Kristallen kaum möglich sein, da dies zu Versetzungen, plastischer Verformung und letztendlich sogar zum Bruch führen würde. In Nanodrähten allerdings, die hochrein und weitgehend frei von Strukturdefekten synthetisiert werden können, sind solch Verspannungen ohne Materialdegradation realisierbar. Im Rahmen des geplanten Projektes sollten daher nach dem sogenannten vapor-liquid-solid Verfahren hergestellte Nanodrähte, monolithisch in mikro- mechanischeVerspannungsmoduleintegriert werden. Basierend aufunseren bisherigen Untersuchungen sind wir überzeugt, damit kontrolliert und reproduzierbar hohe tensile Verspannungen am Nanodraht anbringen zu können. Die mechanische Robustheit der Nanodrahtgeometrie ermöglicht dann über einen weiten Bereich einstellbare Zugspannungen und die damit verbundene Modifikation der Bandstruktur von verspannten Ge-Nanodrähten, axialen Ge/Si- als auch dotierten Nanodraht-Heterostrukturen zu untersuchen. In weiterer Folge soll dabei das Verspannungsmodul durch eine den Nanodraht umhüllende Elektrodenarchitektur (engl. Gate all around) erweitert werden und damit auch die Leitfähigkeit des Nanodrahts, bei verschiedenen Verspannungszuständen durch den sogenannten Feldeffekt moduliert werden können. Schließlich soll auch ein elektrostatisch aktuiertes Verspannungsmodul eingesetzt werden, das die Bestimmung der Piezoresistivität als auch die Veränderungen der optischen Eigenschaften durch - Photolumineszenz, Raman- und Rasterphotostrommessungen bei verschiedenen Temperaturen bis T=4K ermöglich. Diese elektrischen und optischen Untersuchungen an hochverspannten Nanodrähten, werden in Kombination mit ab-initio Simulationen zu einem allgemeinen Verständnis der durch Verspannungeninduzierten Veränderungender elektrischen und optischen Eigenschaften von Ge- und Si- basierten Systemen führen.

Die Auswirkungen von mechanischen Spannungen auf Silizium und Germanium wurden bereits in den 1950er Jahren dahingehend untersucht, die Bandstruktur zu modifizieren und damit die elektrischen und optischen Eigenschaften dieser Halbleitermaterialien für entsprechende Anwendungen zu optimieren. Insbesondere bei Germanium versucht man durch Nanostrukturierung, Einlegieren von Zinn oder eben mechanischen Verspannungen, dieses in einen sogenannten direkten Halbleiter mit verbesserten optischen Eigenschaften überzuführen. Die dazu benötigten hohen Verspannungen sind bei makroskopischen Bauteilen nicht möglich, da diese zur Bildung von Versetzungen, plastischer Verformung und schließlich zum Bruch führen. Die Fähigkeit einkristalline Nanodrähte herzustellen, die weitgehend frei von strukturellen Defekten sind, ermöglichten uns reversible Verspannungen von bis zu 10%. Damit wurden im Rahmen dieses Projektes die Auswirkungen ultrahoher Verspannungen auf die elektrischen und optischen Eigenschaften von Germanium, Silizium aber auch direkten Halbleitern wie CdS untersucht werden. Erstmals konnte eindeutig gezeigt werden, dass der sogenannte giant piezoresistive Effekt, der sowohl für Si als auch für Ge Nanodrähte beobachtet wurde, auf einer durch Verspannung induzierten Oberflächenladungsmodulation beruht. Dies konnte nur bei Nano-drähten beobachtet werden, da hier die Oberfläche wesentlich den Stromtransport beeinflußt. Mit der Realisierung von axialen p-n Dioden in Nanodrähten, konnten wir auch erstmals die Verringerung der Bandlücke bei axialer Verspannung der Nanodrähte direkt messen. Diese experimentellen Ergebnisse in Kombination mit den Simulationen unseres Projektpartners Riccardo Ruralli vom Institut de Ciència de Materials de Barcelona, lieferten ein grundlegendes physikalisches Verständnis der Auswirkungen von mechanischen Verspannungen auf die elektrischen und optischen Eigenschaften der untersuchten Halbleitermaterialien. Die Flexibilität unseres Ansatzes wurde auch durch die Integration von CdS-Nanodrähten in das Dehnungsmodul demonstriert. Nanodrähte aus CdS, waren insofern von besonderem Interesse, da an diesen bereits Dauerstrichlaseremission und ultraschnelleModulationgezeigtwerdenkonnte. EinNachteil solcher Nanodrahthalbeiterlaser ist jedoch das schmalbandige Emissionsspektrum, das durch die Bandlücke des Halbleiters festgelegt ist. In Zusammenarbeit mit der Gruppe von Carsten Ronning von der Univ. Jena haben wir einzelne CdS Nanodrähte in ein Dehnungsmodul integriert und damit erstmals einen durch mechanische Verspannungen dynamisch durchstimmbaren Nanolaser realisiert. Neben der mechanischen Stabilität der Nanodrähte erwiesen sich zuverlässige elektrischen Kontakte bei ultrahohen Verspannungen als kritische Komponenten. Im Rahmen der Optimierung dieser Kontakte entwickelten wir veschiedenste Legierungsverfahren bei denen sich insbesondere Aluminium als äußerst interessantes Kontaktmaterial erwies. Damit konnten ultraskalierte Al-Ge-Al Nanodrahtheterostrukturen hergestellt werden, die sich für viele Anwendungen von quantenballistischen Transport über Einzelelektronen-Transistoren bis hin zu Photo und elektrische Plasmondetektoren als äußerst interessant erwiesen.

Forschungsstätte(n)
  • Technische Universität Wien - 100%
Internationale Projektbeteiligte
  • Carsten Ronning, Friedrich Schiller Universität Jena - Deutschland
  • Thierry Baron, CEA-CNRS - Frankreich
  • Anna Fontcuberta I Morral, École polytechnique fédérale de Lausanne - Schweiz
  • Riccardo Rurali, Universitat Autònoma de Barcelona - Spanien

Research Output

  • 218 Zitationen
  • 15 Publikationen
Publikationen
  • 2020
    Titel Reversible Al Propagation in Si x Ge1–x Nanowires: Implications for Electrical Contact Formation
    DOI 10.1021/acsanm.0c02303
    Typ Journal Article
    Autor Luong M
    Journal ACS Applied Nano Materials
    Seiten 10427-10436
    Link Publikation
  • 2021
    Titel Synthesis of Novel Phases in Si Nanowires Using Diamond Anvil Cells at High Pressures and Temperatures
    DOI 10.1021/acs.nanolett.0c04354
    Typ Journal Article
    Autor Huston L
    Journal Nano Letters
    Seiten 1427-1433
    Link Publikation
  • 2020
    Titel In-Situ Transmission Electron Microscopy Imaging of Aluminum Diffusion in Germanium Nanowires for the Fabrication of Sub-10 nm Ge Quantum Disks
    DOI 10.1021/acsanm.9b02564
    Typ Journal Article
    Autor Luong M
    Journal ACS Applied Nano Materials
    Seiten 1891-1899
    Link Publikation
  • 2021
    Titel Verifying the band gap narrowing in tensile strained Ge nanowires by electrical means
    DOI 10.1088/1361-6528/abd0b2
    Typ Journal Article
    Autor Bartmann M
    Journal Nanotechnology
    Seiten 145711
    Link Publikation
  • 2017
    Titel Fabrication and characterization of a germanium nanowire light emitting diode
    DOI 10.1063/1.5006152
    Typ Journal Article
    Autor Greil J
    Journal Applied Physics Letters
    Seiten 233103
    Link Publikation
  • 2017
    Titel Room-Temperature Quantum Ballistic Transport in Monolithic Ultrascaled Al–Ge–Al Nanowire Heterostructures
    DOI 10.1021/acs.nanolett.7b00425
    Typ Journal Article
    Autor Sistani M
    Journal Nano Letters
    Seiten 4556-4561
    Link Publikation
  • 2019
    Titel Quasi One-Dimensional Metal–Semiconductor Heterostructures
    DOI 10.1021/acs.nanolett.9b01076
    Typ Journal Article
    Autor Benter S
    Journal Nano Letters
    Seiten 3892-3897
    Link Publikation
  • 2018
    Titel Electrical characterization and examination of temperature-induced degradation of metastable Ge 0.81 Sn 0.19 nanowires
    DOI 10.1039/c8nr05296d
    Typ Journal Article
    Autor Sistani M
    Journal Nanoscale
    Seiten 19443-19449
    Link Publikation
  • 2018
    Titel Ultrascaled Germanium Nanowires for Highly Sensitive Photodetection at the Quantum Ballistic Limit
    DOI 10.1021/acs.nanolett.8b01845
    Typ Journal Article
    Autor Staudinger P
    Journal Nano Letters
    Seiten 5030-5035
  • 2018
    Titel The high pressure phase transformation behavior of silicon nanowires
    DOI 10.1063/1.5048033
    Typ Journal Article
    Autor Huston L
    Journal Applied Physics Letters
    Seiten 123103
    Link Publikation
  • 2018
    Titel Monolithic Axial and Radial Metal–Semiconductor Nanowire Heterostructures
    DOI 10.1021/acs.nanolett.8b03366
    Typ Journal Article
    Autor Sistani M
    Journal Nano Letters
    Seiten 7692-7697
    Link Publikation
  • 2018
    Titel Tuning Electroluminescence from a Plasmonic Cavity-Coupled Silicon Light Source
    DOI 10.1021/acs.nanolett.8b03391
    Typ Journal Article
    Autor Glassner S
    Journal Nano Letters
    Seiten 7230-7237
  • 2017
    Titel Dynamical Tuning of Nanowire Lasing Spectra
    DOI 10.1021/acs.nanolett.7b02589
    Typ Journal Article
    Autor Zapf M
    Journal Nano Letters
    Seiten 6637-6643
    Link Publikation
  • 2016
    Titel Electroluminescence from NiSi2/Si/NiSi2 nanowire heterostructures operated at high electric fields
    DOI 10.1002/pssa.201600370
    Typ Journal Article
    Autor Glassner S
    Journal physica status solidi (a)
    Seiten 2895-2900
  • 2019
    Titel Nanoscale aluminum plasmonic waveguide with monolithically integrated germanium detector
    DOI 10.1063/1.5115342
    Typ Journal Article
    Autor Sistani M
    Journal Applied Physics Letters
    Seiten 161107
    Link Publikation

Entdecken, 
worauf es
ankommt.

Newsletter

FWF-Newsletter Presse-Newsletter Kalender-Newsletter Job-Newsletter scilog-Newsletter

Kontakt

Österreichischer Wissenschaftsfonds FWF
Georg-Coch-Platz 2
(Eingang Wiesingerstraße 4)
1010 Wien

office(at)fwf.ac.at
+43 1 505 67 40

Allgemeines

  • Jobbörse
  • Arbeiten im FWF
  • Presse
  • Philanthropie
  • scilog
  • Geschäftsstelle
  • Social Media Directory
  • LinkedIn, externe URL, öffnet sich in einem neuen Fenster
  • , externe URL, öffnet sich in einem neuen Fenster
  • Facebook, externe URL, öffnet sich in einem neuen Fenster
  • Instagram, externe URL, öffnet sich in einem neuen Fenster
  • YouTube, externe URL, öffnet sich in einem neuen Fenster
  • Cookies
  • Hinweisgeber:innensystem
  • Barrierefreiheitserklärung
  • Datenschutz
  • Impressum
  • IFG-Formular
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF