• Zum Inhalt springen (Accesskey 1)
  • Zur Suche springen (Accesskey 7)
FWF — Österreichischer Wissenschaftsfonds
  • Zur Übersichtsseite Entdecken

    • Forschungsradar
      • Historisches Forschungsradar 1974–1994
    • Entdeckungen
      • Emmanuelle Charpentier
      • Adrian Constantin
      • Monika Henzinger
      • Ferenc Krausz
      • Wolfgang Lutz
      • Walter Pohl
      • Christa Schleper
      • Elly Tanaka
      • Anton Zeilinger
    • Impact Stories
      • Verena Gassner
      • Wolfgang Lechner
      • Georg Winter
    • scilog-Magazin
    • Austrian Science Awards
      • FWF-Wittgenstein-Preise
      • FWF-ASTRA-Preise
      • FWF-START-Preise
      • Auszeichnungsfeier
    • excellent=austria
      • Clusters of Excellence
      • Emerging Fields
    • Im Fokus
      • 40 Jahre Erwin-Schrödinger-Programm
      • Quantum Austria
      • Spezialforschungsbereiche
    • Dialog und Diskussion
      • think.beyond Summit
      • Am Puls
      • Was die Welt zusammenhält
      • FWF Women’s Circle
      • Science Lectures
    • Wissenstransfer-Events
    • E-Book Library
  • Zur Übersichtsseite Fördern

    • Förderportfolio
      • excellent=austria
        • Clusters of Excellence
        • Emerging Fields
      • Projekte
        • Einzelprojekte
        • Einzelprojekte International
        • Klinische Forschung
        • 1000 Ideen
        • Entwicklung und Erschließung der Künste
        • FWF-Wittgenstein-Preis
      • Karrieren
        • ESPRIT
        • FWF-ASTRA-Preise
        • Erwin Schrödinger
        • doc.funds
        • doc.funds.connect
      • Kooperationen
        • Spezialforschungsgruppen
        • Spezialforschungsbereiche
        • Forschungsgruppen
        • International – Multilaterale Initiativen
        • #ConnectingMinds
      • Kommunikation
        • Top Citizen Science
        • Wissenschaftskommunikation
        • Buchpublikationen
        • Digitale Publikationen
        • Open-Access-Pauschale
      • Themenförderungen
        • AI Mission Austria
        • Belmont Forum
        • ERA-NET HERA
        • ERA-NET NORFACE
        • ERA-NET QuantERA
        • ERA-NET TRANSCAN
        • Ersatzmethoden für Tierversuche
        • Europäische Partnerschaft BE READY
        • Europäische Partnerschaft Biodiversa+
        • Europäische Partnerschaft BrainHealth
        • Europäische Partnerschaft ERA4Health
        • Europäische Partnerschaft ERDERA
        • Europäische Partnerschaft EUPAHW
        • Europäische Partnerschaft FutureFoodS
        • Europäische Partnerschaft OHAMR
        • Europäische Partnerschaft PerMed
        • Europäische Partnerschaft Water4All
        • Gottfried-und-Vera-Weiss-Preis
        • LUKE – Ukraine
        • netidee SCIENCE
        • Projekte der Herzfelder-Stiftung
        • Quantum Austria
        • Rückenwind-Förderbonus
        • WE&ME Award
        • Zero Emissions Award
      • Länderkooperationen
        • Belgien/Flandern
        • Deutschland
        • Frankreich
        • Italien/Südtirol
        • Japan
        • Korea
        • Luxemburg
        • Polen
        • Schweiz
        • Slowenien
        • Taiwan
        • Tirol–Südtirol–Trentino
        • Tschechien
        • Ungarn
    • Schritt für Schritt
      • Förderung finden
      • Antrag einreichen
      • Internationales Peer-Review
      • Förderentscheidung
      • Projekt durchführen
      • Projekt beenden
      • Weitere Informationen
        • Integrität und Ethik
        • Inklusion
        • Antragstellung aus dem Ausland
        • Personalkosten
        • PROFI
        • Projektendberichte
        • Projektendberichtsumfrage
    • FAQ
      • Projektphase PROFI
      • Projektphase Ad personam
      • Auslaufende Programme
        • Elise Richter und Elise Richter PEEK
        • FWF-START-Preise
  • Zur Übersichtsseite Über uns

    • Leitbild
    • FWF-Film
    • Werte
    • Zahlen und Daten
    • Jahresbericht
    • Aufgaben und Aktivitäten
      • Forschungsförderung
        • Matching-Funds-Förderungen
      • Internationale Kooperationen
      • Studien und Publikationen
      • Chancengleichheit und Diversität
        • Ziele und Prinzipien
        • Maßnahmen
        • Bias-Sensibilisierung in der Begutachtung
        • Begriffe und Definitionen
        • Karriere in der Spitzenforschung
      • Open Science
        • Open-Access-Policy
          • Open-Access-Policy für begutachtete Publikationen
          • Open-Access-Policy für begutachtete Buchpublikationen
          • Open-Access-Policy für Forschungsdaten
        • Forschungsdatenmanagement
        • Citizen Science
        • Open-Science-Infrastrukturen
        • Open-Science-Förderung
      • Evaluierungen und Qualitätssicherung
      • Wissenschaftliche Integrität
      • Wissenschaftskommunikation
      • Philanthropie
      • Nachhaltigkeit
    • Geschichte
    • Gesetzliche Grundlagen
    • Organisation
      • Gremien
        • Präsidium
        • Aufsichtsrat
        • Delegiertenversammlung
        • Kuratorium
        • Jurys
      • Geschäftsstelle
    • Arbeiten im FWF
  • Zur Übersichtsseite Aktuelles

    • News
    • Presse
      • Logos
    • Eventkalender
      • Veranstaltung eintragen
      • FWF-Infoveranstaltungen
    • Jobbörse
      • Job eintragen
    • Newsletter
  • Entdecken, 
    worauf es
    ankommt.

    FWF-Newsletter Presse-Newsletter Kalender-Newsletter Job-Newsletter scilog-Newsletter

    SOCIAL MEDIA

    • LinkedIn, externe URL, öffnet sich in einem neuen Fenster
    • , externe URL, öffnet sich in einem neuen Fenster
    • Facebook, externe URL, öffnet sich in einem neuen Fenster
    • Instagram, externe URL, öffnet sich in einem neuen Fenster
    • YouTube, externe URL, öffnet sich in einem neuen Fenster

    SCILOG

    • Scilog — Das Wissenschaftsmagazin des Österreichischen Wissenschaftsfonds (FWF)
  • elane-Login, externe URL, öffnet sich in einem neuen Fenster
  • Scilog externe URL, öffnet sich in einem neuen Fenster
  • en Switch to English

  

Spektrale Probleme auf Lamplightergruppen und Freie Wahrscheinlichkeitstheorie

Spectral Problems on Lamplighter Groups and Free Probability

Franz Lehner (ORCID: 0000-0002-6902-5148)
  • Grant-DOI 10.55776/P25510
  • Förderprogramm Einzelprojekte
  • Status beendet
  • Projektbeginn 01.08.2013
  • Projektende 30.06.2017
  • Bewilligungssumme 312.180 €
  • Projekt-Website

Wissenschaftsdisziplinen

Mathematik (100%)

Keywords

    Spectral theory, Harmonic analysis, Free probability, Percolation, Cumulants, Lamplighter groups

Abstract Endbericht

Der Schwerpunkt des Projekts verbindet geometrische Gruppentheorie, Perkolationstheorie, freie Wahrscheinlichkeitstheorie und mathematische Physik. Wir wollen quantitative und qualitative Aspekte der Spektraltheorie von freien Lamplightergruppen im Licht einer kürzlich entdeckten Identität zwischen den Spektralmaßen von Perkolationsclustern und Lamplightergruppen untersuchen. Vor diesem Hintergrund wollen wir folgende Fragen angehen. 1. Auffindung einer Verbindung zwischen Perkolation auf freien Produkten von Gruppen und Voiculescus freier Wahrscheinlichkeitstheorie. 2. Berechnung weiterer Beispiele von Kerndimensionen von Faltungsoperatoren auf Lamplightergruppen. 3. Bestimmung der Asymptotik von Kerndimensionen gewisser Zufallsbäume 4. Anwendung der Mourreschen Methode in der freien Wahrscheinlichkeitstheorie. Eine Beantwortung dieser Fragen liefert die ersten Schritte auf dem Weg zu einem besseren Verständnis der Natur der Spektren von Perkolationsclustern, die in der mathematischen Physik ein gewisses Interesse besitzt. Als zusätzliches Thema wollen wir sogenannte spreizbare (spreadable) Kumulanten untersuchen, ein kombinatorisches Instrument, das kürzlich eingeführt wurde, um gewisse nichtkommutative Wahrscheinlichkeitstheorien, z.B. die monotone Unabhängigkeit nach Muraki, zu studieren.

Die Themen des Projekts hangen mit mehreren Aspekten der freien Wahrscheinlichkeitstheorie zusammen. Die Hauptergebnisse eröffnen einen algorithmischen Zugang zur Arithmetik des nichtkommutativen freien Schiefkörpers. Außerdem werden nichtkommutative statistische Charakterisierungsprobleme gelöst, gewisse Problem über Zufallsmatrizen betrachtet und erste Schritte zu einer tropischen Version der freien Wahrscheinlichkeitstheorie getätigt.Die freie Wahrscheinlichkeitstheorie ist die erfolgreichste nichtkommutative Wahrscheinlichkeitstheorie. Neben ihrem Ursprung in der Theorie der Operatoralgebren, weist sie starke Analogien zur klassischen Wahrscheinlichkeitstheorie auf und hat viele Anwendungen und Verbindungen zur Theorie der Zufallsmatrizen, Kombinatorik nichtkreuzender Partitionen, harmonischer Analyse auf freien Gruppen, Darstellungstheorie der symmetrischen Gruppe und Quanteninformationstheorie.Das Project bearbeitet mehrere Aspekte der freien Wahrscheinlichkeitstheorie.1. Die Hauptergebnisse betreffen eine Frage, die im Zusammenhang mit Spektraltheorie auf freien Gruppen aufgekommen ist. Vor einiger Zeit wurde eine Methode zur Berechnung Spektren von Faltungsoperatoren entwickelt. Zu diesem Zweck wurde eine Methode wiederentdeckt, die in der Elektrotechnik und in der Theorie der formalen Sprachen als Linearisierung bekannt ist und nichtkommutative Polynome und rationale Ausdrücke mittels Matrixbüscheln darstellt. Diese Matrixbüschel können Voiculescus operatorwertigem Kalkül unterworfen werden und die numerische Auswertung der Spektren ist möglich. Zu diesem Zweck ist es vorteilhaft, mit Matrixbüscheln von kleiner und möglichst minimaler Dimension zu arbeiten. Der Rang eines Elements ist die minimale Dimension eines zugehörigen Matrixbüschels. Von einem abstrakten Standpunkt gesehen entspricht dies dem Problem, minimale Darstellungen der Elemente des freien Schiefkorpers zu aufzufinden. Das ist ein schwieriges ungelöstes Problem, für das hier Teillosungen gefunden wurden, nämlich eine vollständige Losung des Wortproblems, d.h., der Feststellung, ob zwei minimale Matrixbüschel das gleiche Element darstellen, und die Auffindung minimaler Matrixbüschel für die Inverse eines gegebenen Elements sowie für die Summe und das Produkts zweier Elemente von kleinem Rang.2. Weiters werden Verteilungen quadratischer Formen in nichtkommutativen freien Zufallsvariablen untersucht. Es hat sich herausgestellt, dass sich bei gewissen quadratischen Formen die ungeraden Kumulanten wegkürzen. Dieses Phänomen hat kein klassisches Analogon. Das hat zur Folge, dass Zufallsvariablen, deren Stichprobenvarianz die gleiche Verteilung hat wie die Stichprobenvarianz halbkreisverteilter Zufalls- variablen, nicht unbedingt halbkreisverteilt sein müssen. Die Antwort auf die entsprechende Frage in der klassischen Wahrscheinlichkeitstheorie ist noch offen.3. Marcus, Spielman und Srivastava haben vor einiger Zeit gewisse kombinatorische Faltungen von Polynomen studiert, die im Zusammenhang mit der Kadison-Singer-Vermutung aufgetreten sind und gezeigt, dass diese asymptotisch mit Voiculescus freier Faltung beschrieben werden können. Hier werden entsprechende Faltungen von Polynomen im Rahmen der Max-Plus-Algebra betrachtet und explizit berechnet. Max-Plus-Algebra ist eine Variante der idempotenten oder sogenannten tropischen Algebra und diese Berechnungen können als Anregung gesehen werden, tropische freie Wahrscheinlichkeit zu betrachten.

Forschungsstätte(n)
  • Technische Universität Graz - 100%
Internationale Projektbeteiligte
  • Daniel Lenz, Friedrich Schiller Universität Jena - Deutschland
  • Matthias Keller, Universität Potsdam - Deutschland
  • Roland Speicher, Universität des Saarlandes - Deutschland
  • Andrzej Zuk, Universite D. Diderot - Frankreich
  • Serban Belinschi, Université de Toulouse - Frankreich

Research Output

  • 139 Zitationen
  • 38 Publikationen
Publikationen
  • 2021
    Titel Circular automata synchronize with high probability
    DOI 10.1016/j.jcta.2020.105356
    Typ Journal Article
    Autor Aistleitner C
    Journal Journal of Combinatorial Theory, Series A
    Seiten 105356
    Link Publikation
  • 2020
    Titel Poisson type operators on the Fock space of type B and in the Blitvic model
    DOI 10.7900/jot.2018dec30.2247
    Typ Journal Article
    Autor Ejsmont W
    Journal Journal of Operator Theory
    Seiten 67-97
    Link Publikation
  • 2018
    Titel POLYNOMIAL CONVOLUTIONS IN MAX-PLUS ALGEBRA
    DOI 10.13140/rg.2.2.29775.79523
    Typ Other
    Autor Lehner F
    Link Publikation
  • 0
    Titel Non-uniqueness phase of Bernoulli percolation on reflection groups for some polyhedra in H^3.
    Typ Other
    Autor Czajkowski J
  • 0
    Titel Linearizing the Word Problem in (some) Free Fields.
    Typ Other
    Autor Schrempf K
  • 2024
    Titel Non-uniqueness Phase of Percolation on Reflection Groups in H3
    DOI 10.1007/s10959-024-01313-9
    Typ Journal Article
    Autor Czajkowski J
    Journal Journal of Theoretical Probability
    Seiten 2534-2575
  • 2016
    Titel A characterization of the normal distribution by the independence of a pair of random vectors
    DOI 10.1016/j.spl.2016.02.011
    Typ Journal Article
    Autor Ejsmont W
    Journal Statistics & Probability Letters
    Seiten 1-5
    Link Publikation
  • 2016
    Titel A Characterization of the Normal Distribution by the Independence of a Pair of Random Vectors
    DOI 10.48550/arxiv.1601.00078
    Typ Preprint
    Autor Ejsmont W
  • 2015
    Titel Fock space associated to Coxeter groups of type B
    DOI 10.1016/j.jfa.2015.06.026
    Typ Journal Article
    Autor Bozejko M
    Journal Journal of Functional Analysis
    Seiten 1769-1795
    Link Publikation
  • 2015
    Titel On the asymptotic distribution of block-modified random matrices
    DOI 10.1063/1.4936925
    Typ Journal Article
    Autor Arizmendi O
    Journal Journal of Mathematical Physics
    Seiten 015216
    Link Publikation
  • 2017
    Titel Central limit theorem associated to Gaussian operators of type B
    DOI 10.48550/arxiv.1709.06382
    Typ Preprint
    Autor Ejsmont W
  • 2017
    Titel On the Factorization of Non-Commutative Polynomials (in Free Associative Algebras)
    DOI 10.48550/arxiv.1706.01806
    Typ Preprint
    Autor Schrempf K
  • 2017
    Titel Divisible sandpile on Sierpinski gasket graphs
    DOI 10.48550/arxiv.1702.08370
    Typ Preprint
    Autor Huss W
  • 2017
    Titel Linearizing the Word Problem in (some) Free Fields
    DOI 10.48550/arxiv.1701.03378
    Typ Preprint
    Autor Schrempf K
  • 2017
    Titel Internal DLA on Sierpinski gasket graphs
    DOI 10.48550/arxiv.1702.04017
    Typ Preprint
    Autor Chen J
  • 2017
    Titel Noncommutative probability of type D
    DOI 10.1142/s0129167x17500100
    Typ Journal Article
    Autor Bozejko M
    Journal International Journal of Mathematics
    Seiten 1750010
    Link Publikation
  • 2017
    Titel Sample variance in free probability
    DOI 10.1016/j.jfa.2017.05.007
    Typ Journal Article
    Autor Ejsmont W
    Journal Journal of Functional Analysis
    Seiten 2488-2520
    Link Publikation
  • 2017
    Titel Convolution, subordination and characterization problems in noncommutative probability
    DOI 10.1512/iumj.2017.66.5971
    Typ Journal Article
    Autor Ejsmont W
    Journal Indiana University Mathematics Journal
    Seiten 237-257
    Link Publikation
  • 2018
    Titel A general solution to (free) deterministic equivalents
    DOI 10.1090/conm/709/14297
    Typ Book Chapter
    Autor Vargas C
    Verlag American Mathematical Society (AMS)
    Seiten 131-158
    Link Publikation
  • 2018
    Titel Linearizing the word problem in (some) free fields
    DOI 10.1142/s0218196718500546
    Typ Journal Article
    Autor Schrempf K
    Journal International Journal of Algebra and Computation
    Seiten 1209-1230
    Link Publikation
  • 2018
    Titel Polynomial convolutions in max-plus algebra
    DOI 10.48550/arxiv.1802.07373
    Typ Preprint
    Autor Rosenmann A
  • 2018
    Titel Poisson type operators on the Fock space of type B and in the Blitvi{c} model
    DOI 10.48550/arxiv.1811.02675
    Typ Preprint
    Autor Ejsmont W
  • 2020
    Titel Internal DLA on Sierpinski Gasket Graphs
    DOI 10.1017/9781108615259.008
    Typ Book Chapter
    Autor Chen J
    Verlag Cambridge University Press (CUP)
    Seiten 126-155
    Link Publikation
  • 2019
    Titel Polynomial convolutions in max-plus algebra
    DOI 10.1016/j.laa.2019.05.020
    Typ Journal Article
    Autor Rosenmann A
    Journal Linear Algebra and its Applications
    Seiten 370-401
    Link Publikation
  • 2019
    Titel On the factorization of non-commutative polynomials (in free associative algebras)
    DOI 10.1016/j.jsc.2018.07.004
    Typ Journal Article
    Autor Schrempf K
    Journal Journal of Symbolic Computation
    Seiten 126-148
    Link Publikation
  • 2019
    Titel DIVISIBLE SANDPILE ON SIERPINSKI GASKET GRAPHS
    DOI 10.1142/s0218348x19500324
    Typ Journal Article
    Autor Huss W
    Journal Fractals
    Seiten 1950032
    Link Publikation
  • 2019
    Titel Circular automata synchronize with high probability
    DOI 10.48550/arxiv.1906.02602
    Typ Preprint
    Autor Aistleitner C
  • 2016
    Titel Noncommutative probability of type D
    DOI 10.48550/arxiv.1609.01049
    Typ Preprint
    Autor Bozejko M
  • 2016
    Titel Sample Variance in Free Probability
    DOI 10.48550/arxiv.1607.06586
    Typ Preprint
    Autor Ejsmont W
  • 2016
    Titel A Characterization of Symmetric Stable Distributions
    DOI 10.1155/2016/8384767
    Typ Journal Article
    Autor Ejsmont W
    Journal Journal of Function Spaces
    Seiten 1-3
    Link Publikation
  • 2016
    Titel On computing homology gradients over finite fields
    DOI 10.1017/s0305004116000657
    Typ Journal Article
    Autor Grabowski L
    Journal Mathematical Proceedings of the Cambridge Philosophical Society
    Seiten 507-532
    Link Publikation
  • 2015
    Titel A General Solution to (Free) Deterministic Equivalents
    DOI 10.48550/arxiv.1509.08202
    Typ Preprint
    Autor Vargas C
  • 2015
    Titel Relations between cumulants in noncommutative probability
    DOI 10.1016/j.aim.2015.03.029
    Typ Journal Article
    Autor Arizmendi O
    Journal Advances in Mathematics
    Seiten 56-92
    Link Publikation
  • 2015
    Titel Convolution, subordination and characterization problems in noncommutative probability
    DOI 10.48550/arxiv.1504.04736
    Typ Preprint
    Autor Ejsmont W
  • 2014
    Titel Relations between cumulants in noncommutative probability
    DOI 10.48550/arxiv.1408.2977
    Typ Preprint
    Autor Arizmendi O
  • 0
    Titel A General Solution to (Free) Deterministic Equivalents.
    Typ Other
    Autor Vargas C
  • 0
    Titel Divisible sandpile on Sierpinski gasket Graphs.
    Typ Other
    Autor Huss W
  • 0
    Titel On the Factorization of Non-Commutative Polynomials (in Free Associative Algebras).
    Typ Other
    Autor Schrempf K

Entdecken, 
worauf es
ankommt.

Newsletter

FWF-Newsletter Presse-Newsletter Kalender-Newsletter Job-Newsletter scilog-Newsletter

Kontakt

Österreichischer Wissenschaftsfonds FWF
Georg-Coch-Platz 2
(Eingang Wiesingerstraße 4)
1010 Wien

office(at)fwf.ac.at
+43 1 505 67 40

Allgemeines

  • Jobbörse
  • Arbeiten im FWF
  • Presse
  • Philanthropie
  • scilog
  • Geschäftsstelle
  • Social Media Directory
  • LinkedIn, externe URL, öffnet sich in einem neuen Fenster
  • , externe URL, öffnet sich in einem neuen Fenster
  • Facebook, externe URL, öffnet sich in einem neuen Fenster
  • Instagram, externe URL, öffnet sich in einem neuen Fenster
  • YouTube, externe URL, öffnet sich in einem neuen Fenster
  • Cookies
  • Hinweisgeber:innensystem
  • Barrierefreiheitserklärung
  • Datenschutz
  • Impressum
  • IFG-Formular
  • Social Media Directory
  • © Österreichischer Wissenschaftsfonds FWF
© Österreichischer Wissenschaftsfonds FWF