Bilateral Artificial Intelligence
Bilateral Artificial Intelligence
Disciplines
Computer Sciences (100%)
Keywords
-
Artificial Intelligence,
Machine Learning,
Symbolic Artificial Intelligence,
Deep Learning,
Neural Networks
The project Bilateral AI aims at lifting artificial intelligence (AI) to the next level. Current AI systems are in a sense narrow. They center on a specific application or task such as object or speech recognition. Our project will combine two of the most important types of AI which have been developed separately so far: symbolic and sub-symbolic AI. While symbolic AI works with clearly defined logical rules, sub-symbolic AI (such as ChatGPT) is based on training a machine with the help of large datasets to create intelligent behavior. This integration, resulting in a Broad AI, is intended to mirror something that humans do naturally: the simultaneous use of cognition and reasoning skills. But what exactly is Broad AI? As opposed to Narrow AI, which is characterized by task specific skills, Broad AI aims at solving a wide array of problems, rather than being limited to a single task or domain. By combining sub-symbolic AI (machine learning, ML) with symbolic AI (knowledge representation and reasoning, KRR), Bilateral AI provides the means to develop the foundations of the capabilities and skill acquisition for problem solving by a Broad AI. Harnessing the full potential of both symbolic and sub-symbolic approaches can open new avenues for AI that are better at solving new problems, adapting to a wide variety of environments, having better reasoning skills, and being more efficient in terms of both computation and data use. These key features allow for a vast range of use cases for Broad AI, starting with drug development and medicine, over planning and scheduling, to autonomous traffic management and recommendation systems. With fairness, transparency, and explainability as top priorities, developing Broad AI is also essential for addressing ethical concerns and ensuring a positive impact on our society. These concerns play a central role as cross-cutting aspect in our project. The Broad AI resulting from the bilateral AI approach would use its own sensory perceptions to perform abstractions and engage in a logical thinking process. The AI could then, for example, organize a trip, minimize carbon emissions, or renovate a house as cost- effectively and ecologically as possible. In other words, AI could perform complex planning taking all aspects into account. Sepp Hochreiter, Director of Research: Broad AI could potentially improve our everyday lives as well as system-relevant aspects and processes - such as energy, transportation and healthcare - by becoming more environmentally sustainable, efficient and resource-friendly.
-
Board of Directors (01.10.2024 -)
-
Board of Directors (01.10.2024 -)
-
Board of Directors (01.10.2024 -)
-
Board of Directors (01.10.2024 -)
-
Board of Directors (01.10.2024 -)
-
Director of Research (01.10.2024 -)
-
Board of Directors (01.10.2024 -)
-
Board of Directors (01.10.2024 -)
-
Alexander Felfernig, Technische Universität Graz (27.12.2024 -)
-
Bettina Könighofer, Technische Universität Graz (27.12.2024 -)
-
Elisabeth Lex, Technische Universität Graz (10.6.2024 -)
-
Franz Wotawa, Technische Universität Graz (10.6.2024 -)
-
Johannes Wallner, Technische Universität Graz (12.9.2024 -)
-
Robert Peharz, Technische Universität Graz (10.6.2024 -)
-
Roman Kern, Technische Universität Graz (12.9.2024 -)
-
Thomas Pock, Technische Universität Graz (10.6.2024 -)
-
Wolfgang Maass, Technische Universität Graz (10.6.2024 -)
-
Emanuel Sallinger, Technische Universität Wien (10.6.2024 -)
-
Georg Gottlob, Technische Universität Wien (10.6.2024 -)
-
Mantas Simkus, Technische Universität Wien (12.9.2024 -)
-
Nysret Musliu, Technische Universität Wien (10.6.2024 -)
-
Robert Ganian, Technische Universität Wien (10.6.2024 -)
-
Silvia Miksch, Technische Universität Wien (10.6.2024 -)
-
Stefan Szeider, Technische Universität Wien (10.6.2024 -)
-
Stefan Woltran, Technische Universität Wien (10.6.2024 -)
-
Thomas Lukasiewicz, Technische Universität Wien (10.6.2024 -)
-
Dietmar Jannach, Universität Klagenfurt (10.6.2024 -)
-
Elisabeth Oswald, Universität Klagenfurt (10.6.2024 -)
-
Martin Gebser, Universität Klagenfurt (10.6.2024 -)
-
Wolfgang Faber, Universität Klagenfurt (10.6.2024 -)
-
Erich Kobler, Universität Linz (12.9.2024 -)
-
Gerhard Widmer, Universität Linz (10.6.2024 -)
-
Günter Klambauer, Universität Linz (10.6.2024 -)
-
Johannes Brandstetter, Universität Linz (12.9.2024 -)
-
Johannes Fürnkranz, Universität Linz (10.6.2024 -)
-
Markus Schedl, Universität Linz (10.6.2024 -)
-
Kurt Hornik, Wirtschaftsuniversität Wien (10.6.2024 -)
-
Marta Sabou, Wirtschaftsuniversität Wien (12.9.2024 -)
-
Nils Wlömert, Wirtschaftsuniversität Wien (12.9.2024 -)
-
Sabrina Kirrane, Wirtschaftsuniversität Wien (10.6.2024 -)
Research Output
- 1 Citations
- 4 Publications
-
2025
Title Leveraging Knowledge Graphs for AI System Auditing and Transparency DOI 10.1016/j.websem.2024.100849 Type Journal Article Author Waltersdorfer L Journal Journal of Web Semantics Pages 100849 Link Publication -
2025
Title Pattern-based engineering of Neurosymbolic AI Systems DOI 10.1016/j.websem.2024.100855 Type Journal Article Author Ekaputra F Journal Journal of Web Semantics Pages 100855 Link Publication -
2024
Title Density amplifiers of cooperation for spatial games DOI 10.1073/pnas.2405605121 Type Journal Article Author Svoboda J Journal Proceedings of the National Academy of Sciences -
2024
Title A Multimodal Single-Branch Embedding Network for Recommendation in Cold-Start and Missing Modality Scenarios DOI 10.1145/3640457.3688138 Type Conference Proceeding Abstract Author Ganhör C Pages 380-390 Link Publication